
Conclusions

Insofar as the statements of geometry speak about reality, they are not certain, and
insofar as they are certain, they do not speak about reality. (Einstein, 1921, p. 3.)

Fractal geometry has emerged in direct response to the need for better
mathematical descriptions of reality, and there is little doubt that it pro
vides a powerful tool for interpreting and rendering natural systems. Yet
in its wake has come, once again, the realization that all knowledge is con
tingent upon its context in time and space, that good theory is relative to
what we already have and have had before, thus reminding us of Einstein's
(1921) thoughts on the limitations of any geometry, indeed of all mathemat
ics. Although extending our abilities to model both natural and artificial
systems, fractals impress even further upon us the inherent complexity and
uncertainty of the world we live in. In this sense, one kind of uncertainty 
that involving the inapplicability of Euclidean geometry to many real sys
tems - has been replaced with another - a more appropriate geometry for
simulating reality, but one which is based on the notion that reality itself
has infinite complexity in the geometric sense.

In this conclusion, we will attempt to pull the diverse threads which
we have woven in this book together, and suggest directions in which the
application of fractal geometry to cities as well as the theory of the fractal
city might develop. Throughout, we have made many suggestions and
identified many problems, all of these being worthy of further research,
and we will not attempt to list these again. What we will do, is summarize
the theory as it has emerged here, thus providing readers with both a sense
of closure as well as some directions in which we feel this work should be
taken further. In one sense, we can see this book in two parts: first in the
early chapters, we presented the rudiments of fractal geometry and mildly
suggested ways in which it might pertain to the physical form or mor
phology of cities. In the second part, from Chapter 5 onwards, we argued
that the city itself is fractal and the new geometry the obvious medium for
its measurement and simulation. In this second part, we also drew a major
distinction between fractals as applied to single cities and to systems of
cities, to intra-urban and to inter-urban spatial structure. But our exposition
has been mainly from the standpoint of fractals as they are applicable to
cities, and not the other way around. Perhaps it is time to change and
rework the edifice of urban spatial theory, noting the ways in which fractals
arise naturally and spontaneously, once we now have this new geometry
in place. This has not been our quest here, but doubtless in time, the map
will be completed in this way by others.
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We are now able to provide a reasonably coherent summary of the ways
in which fractal geometry is applicable to cities in general, urban growth
and form in particular, but before we do so, a word about dimension. The
concepts of Euclidean dimension are so deeply ingrained that we use them
and will continue to do so as a shorthand to describe the magnitude and
complexity of many systems of interest. For example, notwithstanding the
fact that we now know that the dimension of any real system is fractional,
we still refer to it as existing in n dimensions where n is an integer (usually
the integral part of the fractal dimension). This is important here in that
we can articulate cities as having properties that can still be measured as
points, lines, areas and volumes, from zero to three dimensions, or even
beyond if our geometry is one that results from urban processes which can
be visualized in mathematical space. However, in this context, most of our
ideas are based on conceiving of the city as sets of lines and areas, and
thus our geometry is based upon one and two dimensions, not zero or
three, although there are arguments which suggest that cities might be tre
ated as points or volumes, thus composing fruitful extensions to the new
geometry.

The way we have represented the geometry of the city has been central
to our analysis. In essence, cities are conceived as filling two-dimensional
space, as sets of connected points and lines which form areas, less than the
entire space in which they might exist but more than simply the straight
line; their fractal dimensions must therefore fall between one and two. It
was only in Chapter 7 that we began to treat cities in this way for we
first introduced a simplification to the geometry, approximating areas as
boundaries which we dealt with in Chapters 5 and 6. In short, we proposed
that a growth model for the city based on diffusion-limited aggregation
(DLA) with a dimension D = 1.71, represents an idealized model of the
way in which urban space is filled, while a simplified form for the boundary
of the space filled was based on the Koch curve with a dimension D =
1.26. We did not provide a rigorous link between DLA and the Koch curve,
but we did present sufficient examples to show that the dimensions of idea
lized and real boundaries are less in value than those for the entire cities
from which they are formed.

In developing fractal geometry, we introduced two methods for deriving
dimensions, the first based on changing the scale over which an object is
measured, the second based on changing its size. We mainly used the first
method for urban boundaries although it can be used for areas (Batty and
Xie, 1994), whereas the second method is appropriate to systems where we
can grow the city into the space which it fills. In another sense, our distinc
tion between boundaries and areas filled is one between treating the city
in static as opposed to dynamic terms, the Koch model being a static model
of the way scale is varied, the DLA model being a dynamic one where the
object is grown by varying its size. The relations between the object, the city,
and scale and size are generally the same in that population N, measured by
the number of elements composing the urban boundary or space filled, is
related to scale r or size R through power laws involving the fractal dimen
sion D. All subsequent analysis flows from these premises.

The critical relations for boundaries relate number of elements and their
length to scale but there are few substantive implications for urban theory.



For growing cities, however, the link to urban theory is much stronger and
more suggestive. Population as a function of linear size is easily generaliz
able to area which is at the basis of allometry, the study of relative size,
while once area is invoked, density can be defined. This relates the entire
analysis to mainstream urban economics where classic density profiles for
cities are outcomes of diverse market clearing processes based on the con
ventional micro-economic behavior of the land market. In short, the key
relations for the city which involve fractal dimension, relate population and
its density to linear size and area, these relations being structured in
incremental or cumulative form. Moreover, we showed in Chapter 9 that
these relations appear to have greater rationale than those used tradition
ally, and what is more, that the whole approach shows how careful one
must be in defining and measuring densities. One conclusion is that much
of the work on urban density theory and its applications over the last 40
years should be reworked in the light of these developments.

There are many extensions to this geometry which we have pondered
since we began this work. The obvious one which we have explored in part
elsewhere, involves growing cities based on more than one seed or center,
that is moving from a monocentric to a multicentric context. We explored
the influence of two cities planted from separate seeds growing towards
one another, thus forming a larger urban aggregate in terms of the conse
quent mixing of dimensions (Fotheringham, Batty and Longley, 1989), but
we barely touched the surface of these ideas, and there is all still to be
done. We have also begun to explore DLA in three dimensions, and to
speculate on what a three-dimensional urban fractal might be like, but so
far, we have not had the resources to pursue this line of attack to any
conclusion. We have explored many modifications to the growth processes
in DLA-like models which give rise to different urban forms, hence fractal
dimensions, we have mixed processes and dimensions, and we have con
sidered ways in which our growth models might incorporate reversibility.
However, we have but scratched the tip of an iceberg, and to ex.tract even
the smallest kernel of knowledge which will advance our understanding
of urban form, there is an enormous research program to initiate.

Extending fractal geometry to systems of cities is comparatively straight
forward. Hints have been provided in Chapters 1 and 10, but a thorough
analysis is yet to be attempted. We have shown how the central place hier
archy is fractal as evidenced by the rank-size distribution, and we have
speculated that population densities must fall, and fractal dimensions
increase as cities move up their hierarchy. But we have not shown how
this possibility is consistent with the growth of the single city and its size;
for the analysis of a single growing city implies nothing about the way
cities might grow and compete within a hierarchy. In this book, our analysis
has been largely confined to the single city, to intra-urban spatial structure,
and extensions to systems of cities must therefore be high on any
research agenda.

We began this book by examining visual perceptions of urban form, the
traditional starting point for understanding the city. Indeed, our initial for
ays into the geometry of cities were in terms of how we might render their
form through data and models so that we might generate more realistic
and more communicable pictures using computer graphics. This somewhat
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serendipitous approach (which incidentally has been largely responsible for
the general awakening of interest in fractals) did, however, introduce the
idea that computers are laboratories for visualizing urban form, with great
potential to enhance our understanding as well as to communicate complex
ideas in manageable form. Throughout, we have been intent upon
developing computer models which can ultimately be used, in such labora
tory settings, to visualize different urban forms, with very different degrees
of realism and prospects for realization. Now we have come to the end,
we must admit that our models are still highly simplistic, yet do contain
the rudiments of reasonable explanation, particularly those which we exam
ined in Chapter 8.

The question some will ask is whether or not these ideas have any rel
evance for real policy making and planning. The answer we must give is,
of course, contingent upon context, but we would argue that these ideas
are as relevant in thinking about current urban problems such as energy,
transportation, spatial polarization and segregation, planning control and
so on as those currently advocated. But they are certainly less accessible,
although our quest has been to make them a little more so and computer
graphics is central to this. What fractal geometry does establish is that cities
like most other real systems manifest a myriad of infinite complexity and
this must change our responses to urban planning which have hitherto been
simplistic and unrealistic, to say the least. Barnsley (1988a) who we quoted
at the beginning of this book, says that "Fractal geometry will make you
see everything differently", but it also changes our perceptions concerning
the certainty of the reality and how we might manipulate it. There is now
renewed hope that we might be able to forge a more conclusive link
between the physical form of cities and the various social, economic and
institutional processes that are central to their functioning.




